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Abstract
Tau and amyloid β (Aβ), 2 key pathogenic proteins in Alzheimer’s disease (AD), reportedly spread throughout the brain as
the disease progresses. Models of how these pathogenic proteins spread from affected to unaffected areas had been
proposed based on the observation that these proteins could transmit to other regions either through neural fibers
(transneuronal spread model) or through extracellular space (local spread model). In this study, we modeled the spread of
tau and Aβ using a graph theoretical approach based on resting-state functional magnetic resonance imaging. We tested
whether these models predict the distribution of tau and Aβ in the brains of AD spectrum patients. To assess the models’
performance, we calculated spatial correlation between the model-predicted map and the actual map from tau and amyloid
positron emission tomography. The transneuronal spread model predicted the distribution of tau and Aβ deposition with
significantly higher accuracy than the local spread model. Compared with tau, the local spread model also predicted a
comparable portion of Aβ deposition. These findings provide evidence of transneuronal spread of AD pathogenic proteins in
a large-scale brain network and furthermore suggest different contributions of spread models for tau and Aβ in AD.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder char-
acterized by the extracellular deposition of amyloid β (Aβ) and
intracellular aggregation of hyperphosphorylated tau (Braak
and Braak 1991a, 1991b). Postmortem and in vivo positron
emission tomography (PET) imaging studies have demonstrated
that during disease progression, tau and Aβ spread throughout
the brain with characteristic spreading patterns (Braak and
Braak 1991a, 1991b; Cho et al. 2016). Tau aggregates are first
found in the transentorhinal cortex of the anteromedial tempo-
ral lobe and then in other parts of the temporal lobe, including
entorhinal and hippocampal areas. Subsequently, tau spreads to
limbic and association areas (Braak and Braak 1991a, 1991b). In
contrast, patterns of Aβ plaques follow essentially the opposite
direction: Aβ spreads from neocortical areas to the brainstem
and cerebellum (Thal et al. 2002).

The mechanism by which these 2 pathogenic proteins
spread from affected to unaffected areas has been studied, and
several hypothetical models have been proposed. First, the
“transneuronal spread model” suggests that pathogenic pro-
teins spread along neuronal connections, exhibiting prion-like
behavior (Goedert et al. 2017). This model is based on previous
reports showing that regions with high tau and Aβ levels
exhibit higher synaptic connections with each other than with
regions with low tau and Aβ levels (Brettschneider et al. 2015).
At the local circuit level, studies using animal models and cell
culture have shown that locally infused or formed Aβ (Nath
et al. 2012; Song et al. 2014) and tau (de Calignon et al. 2012; Liu
et al. 2012; Wu et al. 2016) are transmitted to other neurons
through neural fibers. Alternatively, observations that Aβ
(Rajendran et al. 2006) and tau (Simón et al. 2012) are released
into the extracellular space either in a free form or within vesi-
cles, and uptaken by nearby neurons or glial cells, have sug-
gested that pathogenic proteins spread to physically adjacent
regions. This is termed “local spread model” in this study.

Recent neuroimaging studies have shown that the distribu-
tion of brain atrophy, hypometabolism, or Aβ can be predicted
by brain connectivity, supporting the transneuronal spread of
pathogenic proteins (Seeley et al. 2009; Raj et al. 2012; Zhou
et al. 2012; Mutlu et al. 2017). To date, however, there has been
no quantitative comparison of these 2 spread models in the
brains of AD patients, or evaluation of whether tau and Aβ fol-
low different spread models.

In this study, we modeled the spread of pathogenic proteins
using a graph theoretical approach based on resting-state func-
tional magnetic resonance imaging (rs-fMRI) data. We tested
whether the models could predict the distribution of tau and Aβ
in the brains of AD spectrum patients. We postulated that this
could provide insight into the mechanism of spreading of tau
and Aβ on a large scale, and thus the progression of the disease.

Material and Methods
Two data sets using different radiotracers for tau and amyloid
PET were used in this study.

Data Set 1

Participants
First data were collected from the dementia clinic at Samsung
Medical Center (Center 1) and Asan Medical Center (Center 2) in
Seoul, Republic of Korea. Subjects aged 60–90 years, who were
either cognitively healthy or were diagnosed with mild

cognitive impairment (MCI) or AD, were recruited between
January 2016 and July 2017. For inclusion as a cognitively
healthy elderly subject, subjects required a normal neurological
examination, a clinical dementia rating of 0, and a Mini-Mental
State Examination (MMSE) score higher than 27. All participants
with MCI met Petersen’s criteria (Petersen et al. 1999) and those
with AD satisfied the criteria for a clinical diagnosis of AD
according to the National Institute of Neurological and
Communicative Disorders and Stroke and Alzheimer’s Disease
and Related Disorders Association (McKhann et al. 2011). All
recruited subjects underwent tau (18F-THK5351) and amyloid
(18F-florbetaben) PET; in addition, cognitively healthy elderly
subjects underwent rs-fMRI within 60 days of PET imaging.
Among the 87 recruited subjects, we included cognitively
healthy elderly subjects with negative amyloid pathology (brain
amyloid plaque load score <2; Supplementary Table S1) and
MCI and AD patients with positive amyloid pathology (brain
amyloid plaque load score ≥2) based on amyloid (18F-florbeta-
ben) PET (Seibyl et al. 2016). We excluded subjects with atypical
AD or non-amnestic MCI. Furthermore, we inspected all imag-
ing data for apparent artefacts and for motion artefacts, that is,
for movements exceeding 2mm on any axis or 2° on rotation,
but no subject had to be excluded. Eventually, 23 cognitively
healthy elderly subjects and 35 AD spectrum patients (14 MCI
and 21 AD) were available for analysis.

The study protocol was approved by the institutional review
boards of both Samsung Medical Center and Asan Medical
Center, and informed consent was obtained from each partici-
pant according to the guidelines outlined in the Declaration of
Helsinki.

MRI Acquisition and Preprocessing
T1 and T2* MR images were acquired using a 3.0-T MR scanner,
Philips Intera Achieva (Philips Healthcare, Eindhoven, The
Netherlands). T1-weighted anatomical MR images were obtained
with repetition time = 9.9ms, echo time = 4.6ms, flip angle = 8°,
voxel size = 1.0 × 1.0 × 0.5mm3 for Center 1 and repetition time =
6.8ms, echo time = 3.1ms; flip angle = 9°, voxel size = 1.11 × 1.11
× 1.2mm3 for Center 2. T2*-weighted MR images were obtained
using a gradient echo planar imaging pulse sequence (repetition
time = 3000ms, echo time = 35ms, flip angle = 90°, voxel size =
1.72 × 1.72 × 4mm3, slice number = 35, frame number = 100 for
Center 1 and repetition time = 3000ms, echo time = 30ms, flip
angle = 90°, voxel size = 3.3 × 3.3 × 3.3mm3, slice number = 47,
frame number = 140 for Center 2).

During rs-fMRI scanning, subjects were instructed to remain
awake with their eyes closed. The following preprocessing steps
were performed on the rs-fMRI data, using Statistical Parametric
Mapping software 12 (SPM, http://www.fil.ion/uc.ac.uk/spm) and
our custom codes, running on MATLAB (MathWorks, Natrick,
MA): 1) slice-timing correction, 2) realignment with rigid-body
transformation, 3) linear detrending, 4) regressing-out of nui-
sance variables (12 parameters of rigid body head motion, sig-
nals averaged over deep white matter and lateral ventricles, and
signals averaged over the whole brain), 5) normalization to a
Montreal Neurological Institute (MNI) space (voxel size 2 × 2 × 2
mm3), 6) spatial smoothing with a Gaussian kernel of 6-mm full-
width at half-maximum (FWHM), and 7) temporal filtering at
0.01–0.1Hz. After removing the first 5 volumes for T1-
equilibration effects, 95 (285 s) and 135 volumes (405 s) were
used for constructing the connectivity map for each center,
respectively. Because performing global signal regression during
preprocessing is still controversial (Murphy et al. 2009), we
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analyzed our data both with and without global signal regres-
sion (see Supplementary Result).

PET Acquisition and Preprocessing
We used a Discovery STE PET/CT scanner at Center 1 and
Discovery 690, 710, and 690 Elite PET/CT scanner at Center 2 (GE
Healthcare, Milwaukee, WI, USA). The same imaging and recon-
struction protocol was used in both centers. Amyloid PET
images were acquired for 20min, starting at 90min after the
intravenous bolus injection of 300 ± 30MBq of 18F-florbetaben
(Barthel et al. 2011). Tau PET images were acquired for 20min,
starting at 50min after the intravenous bolus injection of 185 ±
18.5 MBq of 18F-THK5351, which binds to the aggregated tau in
paired helical filaments (Harada et al. 2016). Prior to the PET
scan, we applied a head holder to minimize head motion and
acquired brain CT images for attenuation correction. Using the
ordered-subsets expectation maximization algorithm (iteration
= 4, subset = 16), 3D PET images were reconstructed with a vox-
el size of 2.0 × 2.0 × 3.27mm3. To increase data uniformity
between different PET scanners, we applied a 3D Hoffman
phantom-based PET harmonization method, as described by
Joshi et al. (2009). We calculated the standardized uptake value
(SUV) by normalizing the tissue radioactivity concentration by
the injected dose (MBq) and body weight (kg). We corrected the
partial volume effects (PVE) for SUV images using the geometric
transfer matrix approach (Rousset et al. 1998; Gonzalez-Escamilla
et al. 2017). In PVE correction, we used brain parcellation based on
automated anatomical labeling (AAL), which is typically used in
functional neuroimaging research, comprising 116 cortical and
subcortical regions (Tzourio-Mazoyer et al. 2002). Subsequently,
SUV images were coregistered to T1-weighted anatomical images.
After T1 image segmentation, the brain parcellation atlas in MNI
space was normalized to T1-coregistered PET image, and region-
wise PVE corrected data were obtained. Finally, we calculated the
regional SUV ratio (SUVR), using the cerebellar cortex value as a
reference. We measured both PVE corrected and uncorrected data
and primarily used the former for the analysis; we also confirmed
the results using PVE uncorrected data (see Supplementary
Results).

For tau PET, we only included cortical regions in the analy-
sis, considering “off-target” binding of tau tracer at subcortical
structures (Betthauser et al. 2017). After excluding cerebellar
regions, 82 and 90 regions were analyzed for tau and Aβ,
respectively (Supplementary Table S2).

Because tau and Aβ are also found in the brains of cogni-
tively healthy elderly subjects, we computed the regional t val-
ues of PET between the cognitively healthy subjects and AD
spectrum patients, to focus on AD-related tau and Aβ distribu-
tion. The t value was calculated from 2-sample t-test after con-
trolling for age, sex, and level of education. Thus, a higher
positive t value signified a higher pathogenic protein burden in
AD spectrum patients than in cognitively healthy subjects.
Negative t values were regarded as noise and were therefore
set to zero. As this study aimed to evaluate the distribution
(spatial pattern) of pathogenic protein deposition, we rescaled
the t value of tau and Aβ PET from 0 to 1 using the min–max
normalization before the analysis in order to have a similar
scale for tau and Aβ.

Constructing the Connectivity Map

For constructing the connectivity map, we used the rs-fMRI
data of cognitively healthy elderly subjects. We used AAL par-
cellation to define the node. The averaged rs-fMRI time series

were extracted for each region after masking it with individual
gray matter probability maps higher than 0.5. Pearson’s correla-
tion coefficients between the rs-fMRI time series of each region
were calculated to determine functional connectivity. We only
included positive functional connections after false discovery
rate multiple comparison correction (at a q level of <0.01) in the
connectivity map, to exclude spurious connections. Furthermore,
we transformed the correlation value with Fisher’s z normaliza-
tion for normality of the data. A group-averaged functional con-
nectivity map was used in the analysis.

Identification of Pathogenic Protein Epicenters

We assumed that regions with a higher burden of pathogenic
proteins, tau or Aβ, would more likely be the sites of initial
deposition, acting as epicenters for pathogenic protein spread-
ing. Furthermore, we considered that, if spreading occurred via
a diffusion process, molecules would spread from an area of
high to an area of low concentration. Thus, we identified
regions as epicenters if they contained high levels of tau or Aβ
(above a certain threshold of normalized t value), as deter-
mined using the PET images. To avoid arbitrariness, we applied
a wide range of thresholds, from 0.1 to 0.9 (increasing by steps
of 0.1), when determining these epicenters. Therefore, the
number of epicenters varied according to the applied thresh-
olds. We assessed whether results were consistent across the
thresholds.

Transneuronal Spread Model

We modeled transneuronal spreading of pathogenic proteins as
a process of diffusion from the epicenters to other regions,
through the brain network. Thus, we hypothesized that the
regional levels of pathogenic proteins depended on the functional
network distance from the epicenters. For the transneuronal
spread model, we used a linear regression model composed
of a spread variable and intercept, expressed as follows:
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where Pi is the predicted level of pathogenic protein at the ith
region, Li,Ej is the shortest weighted path length between the ith
region and the jth epicenter (Ej), CEj is the level of pathogenic
protein at the jth epicenter, and e is the total number of epicen-
ters. Β and ɑ are the coefficients for spread variable and inter-
cept, respectively. The shortest weighted path length is a value
that minimizes the sum of all edges between 2 regions
(Rubinov and Sporns 2010) and is expressed as follows:
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where f is a function that inverses connection weights, Wuv,
and ↔gi j

W is the shortest weighted path between the ith and jth
regions. We set the self-connection to zero. Therefore, the level
of pathogenic protein at one epicenter was predicted based on
its network distance from other epicenters. We weighted the
contribution of each epicenter by its pathogenic protein levels
(CEj

), considering that an epicenter with higher levels of patho-
genic protein would be a site of earlier deposition and have a
higher contribution to the spread of the protein. Therefore,
according to the model, the regional level of pathogenic protein
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was predicted by the normalized sum of pathogenic protein,
afferent from all epicenters.

Local Spread Model

We developed a “local spread model,” under the hypothesis
that the regional levels of pathogenic proteins depend on the
physical distances from epicenters. The local spread model
uses the Euclidean distances between regions, instead of net-
work distances and is expressed as follows:
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where Di,Ej is the Euclidean distance between the ith region and
the jth epicenter. We used the coordinates of the center of
mass given for each brain region to calculate the Euclidean dis-
tances, which is expressed as follows:
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where (i1, i2, i3) and (j1, j2, j3) are the coordinates for the center
of mass of the ith region and jth region.

Graph theoretical measurements of the shortest path length
and Euclidean distance were calculated using the Brain
Connectivity Toolbox (http://www.brain-connectivity-toolbox.
net). The results were visualized using the BrainNet viewer
(http://www.nitrc.org.projects.bnv).

Statistical Analysis

We calculated the spatial correlation between the model-
predicted and actual measured map (from tau and Aβ PET) to eval-
uate the spatial similarity between the 2 maps and, thus, assess
the prediction performance of the model. In order to infer the sta-
tistical significance of the model, we performed a permutation
test. Under the assumption that the accuracy of the model predic-
tion depended on the particular organization of the brain, we ran-
domly scrambled the network, as well as a Euclidian distance
map (10 000 permutations). From these permutations, R values
between the predicted map, based on the random map, and the
actual measured map were calculated and their null distribution
was evaluated. We set R values higher than the highest 5% of the
10 000 permutations as significant (permutation P value < 0.001).

To compare the performance between the 2 models (trans-
neuronal spread model and local spread model), we calculated
Fisher’s R to z transformation, a tool that measures whether 2
given Pearson’s correlation coefficients (R value) are statisti-
cally significantly different. We used 2-tailed tests, with statis-
tical significance set at P < 0.05. Lastly, to evaluate the
robustness of our results to intersubject variability, we per-
formed a bootstrap analysis. The analysis was repeated 1000
times using random bootstrap samples of cognitively healthy
subjects and patients with AD spectrum disorders. The 95%
confidence interval of the results were calculated. For all statis-
tical analyzes, MATLAB was used. The overall study design is
illustrated in Figure 1.

Replication in AD Neuroimaging Initiative Cohort (Data
Set 2)

Since we aimed to evaluate the model that predicts the distri-
bution of tau and Aβ in patients with AD spectrum disorders,
we tested whether our findings could be replicated with data

collected using other tau and Aβ PET radiotracers. For this pur-
pose, we used tau (18F-AV1451) and amyloid (18F-florbetapir)
PET data extracted from AD Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu), as a replication cohort. Since dif-
ferent PET tracers were used for generating these data, our
results would be more generalizable if we could replicated
them in this cohort. We applied the same inclusion and exclu-
sion criteria as for data set 1 and eventually analyzed 49
cognitively healthy subjects and 45 AD spectrum patients
(Supplementary Table S3). Detailed description of participants
and PET data is provided in Supplementary Methods.

Analysis Using a Different Brain Parcellation Scheme

In order to demonstrate that the performance of the 2 models
was invariant to the brain parcellation scheme used, we per-
formed an additional analysis using different brain parcellation.
We created non-overlapping spherical masks of 3-mm radius,
according to the coordinates described by Power et al. (2011) and
performed the same analysis (see Supplementary Methods).

Results
Participants

Table 1 shows the demographics of the study participants. As
expected, AD spectrum patients performed worse on the MMSE
than did cognitively healthy elderly subjects. The t-statistic
maps of PET data showed a spatially distinct distribution of tau
and Aβ. Tau was mainly deposited in the inferior temporal and
parietal areas, while Aβ was deposited mainly in the medial
frontal and parietal areas (Fig. 2).

Prediction of Tau Distribution

In the permutation test, the highest 5% cutoff was found at an
R value of 0.2 for both the network and Euclidean distance ran-
dom maps (Supplementary Fig. S1).

The spatial correlation between the predicted tau map,
based on the transneuronal spread model, and the actual mea-
sured map was consistently higher than the cutoff value across
the epicenter thresholds. Fisher’s R to z transformation showed
that correlations obtained from the transneuronal spread
model were significantly higher than those obtained from the
local spread model (Fig. 3A).

While the performance of each model depended on the number
of epicenters, the highest correlation was found for the transneuro-
nal spread model at an epicenter threshold of 0.6. At this threshold,
15 regions, including the bilateral angular, posterior cingulate, mid-
dle frontal, superior orbitofrontal, middle occipital, inferior and
middle temporal, and right inferior occipital cortices, were identi-
fied as epicenters, that is, best-fit epicenters for the model (Fig. 4).
Functional distances among these epicenters and other brain
regions explained 38% of the tau distribution, while Euclidean dis-
tances poorly explained the distribution (Fig. 3B). Statistics and esti-
mated parameters of the models are included in Table 2.

Prediction of Aβ Distribution

The correlation between the predicted Aβ map, based on both
models, and the actual measured map was consistently high
across different epicenter thresholds. The correlations obtained
from the transneuronal spread model were significantly higher
than those obtained from the local spread model at thresholds
ranging from 0.4 to 0.7 (Fig. 5A). The highest correlation was
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found for the transneuronal spread model at an epicenter
threshold of 0.5. At this threshold, 35 regions were identified as
epicenters, mostly located in the frontoparietal area (Fig. 4).
With these epicenters, the transneuronal spread model
explained 34% of the Aβ distribution, while the local spread
model explained 9% of the distribution (Fig. 5B). Statistics and
estimated parameters of the models are included in Table 2 (for

estimated parameters using different epicenter thresholds, see
Supplementary Table S4).

Evaluating Robustness Using Bootstrap Analysis

First, 1000 bootstrap samples, with replacement of 23 healthy
subjects’ PET images (tau and amyloid PET), were evaluated.
Using the bootstrap samples, 1000 R values were calculated

Figure 1. Schematic diagram of the analysis steps. Steps included: (A) calculation of the t-statistical map for tau and Aβ between healthy subjects and AD spectrum

patients, (B) identification of tau and Aβ epicenters from PET images and brain network construction from rs-fMRI data, (C) construction of the predicted maps using

the transneuronal spread model and local spread model, and (D) model validation by calculating the spatial correlation between the predicted and actually measured

map. Aβ, amyloid β; AD, Alzheimer’s disease; rs-fMRI, resting-state functional magnetic resonance imaging; PET, positron emission tomography.

Table 1 Study population demographics

Demographics Healthy (N = 23) AD spectrum (N = 35) P value

Age, mean (SD), years 69.73 (5.72) 71.74 (5.48) 0.18
Onset age, mean (SD), years 67.06 (5.86)
Female, N (%) 18 (78) 24 (68) 0.41
Education, mean (SD), years 11.56 (4.37) 10.85 (4.43) 0.55
K-MMSE, median (IQR), score 29 (28–30) 23 (20–26.5) <0.001
CDR 0/0.5/1, N 23/0/0 35/0/0
Presence of ε4 allele of APOE, N (%)a 5 (21) 9 (25) 0.73
Hypertension, N (%) 9 (39) 11 (31) 0.54
Diabetes, N (%) 1 (4) 5 (14) 0.22
Family history of dementia, N (%) 4 (17) 4 (11) 0.51
Center 1/Center 2, N 10/13 13/22 0.62

P values and statistics were calculated using Student t-test, Mann–Whitney test, or chi-squared test (2-tailed).
aSubject has one or more ε4 alleles.

AD, Alzheimer’s disease; IQR, interquartile range; CDR, clinical dementia rating scale; K-MMSE, Korean version of mini-mental state examination; SD, standard deviation.
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from the 2 models (transneuronal spread model and local
spread model) at epicenter threshold of 0.6 and 0.5 for tau and
Aβ, respectively. The histogram of R values demonstrated that
R values differed significantly between the 2 models (Fig. 6A).

We then again evaluated bootstrap samples with replace-
ment of 35 AD spectrum patients’ PET images. The bootstrap
results showed that R values differed significantly between the
2 models (Fig. 6B).

Lastly, bootstrap samples, with replacement of 23 healthy
subjects’ rs-fMRI data (connectivity map), were evaluated. This
demonstrated that R values calculated from the transneuronal
spread model were significantly higher than those calculated
from the local spread model for tau and Aβ (Fig. 6C).

Replication in the ADNI Cohort (Data Set 2)

When different data were used in the analysis, we obtained
results very similar to our primary results (Supplementary Figs
S2 and S3). The transneuronal spread model predicted the dis-
tribution of tau and Aβ deposition with significantly higher
accuracy than the local spread model, but the local spread model
also predicted a comparable portion of the Aβ deposition.

Analysis Using Different Brain Parcellation Scheme

While the use of the different brain parcellation scheme gave
results that were similar to our primary results, the overall per-
formance of the local spread model improved across the epi-
center thresholds for both tau and Aβ (Supplementary Fig. S4).

Discussion
In this study, we modeled the spreading of pathogenic proteins
using a graph theoretical approach and validated 2 currently con-
sidered models, using imaging data of AD spectrum patients.
Overall, our results revealed that the transneuronal spread model
outperformed the local spread model in predicting the distribu-
tion of the pathogenic proteins, tau and Aβ.

Previous studies have demonstrated the transneuronal
spreading of tau and Aβ in AD, both in vitro and in vivo (Liu
et al. 2012; Nath et al. 2012; Song et al. 2014; Wu et al. 2016).

The results of the current study indicate that the transneuronal
spread model is also valid in large-scale brain networks.
Similarly, previous studies have shown that brain atrophy fol-
lows a network pattern, which might reflect the transneuronal
spreading of pathogenic proteins (Raj et al. 2012; Zhou et al.
2012; Mutlu et al. 2017). In the current study, we provide direct
evidence for pathogenic protein spreading, using tau and amy-
loid PET imaging. Furthermore, a previous study by Mutlu et al.
(2017) showed that the distribution of Aβ can be predicted
based on the functional connectivity of brain areas with the
epicenter of Aβ deposition. However, while the study of Mutlu
et al. used one seed region as an epicenter, we allowed for a
larger number of epicenters, which may contribute to the
spreading of Aβ.

The best performance was found for the transneuronal spread
model, with 15 and 35 epicenters for tau and Aβ, respectively.
Recently, study using longitudinal PET data demonstrated “out-
degree hubs” for tau and Aβ propagation. Interestingly, epicenters
in our study overlap with the hubs, suggesting that epicenters are
source of pathogenic protein propagation (Sepulcre et al. 2018).
While epicenter distribution differed between tau and Aβ, epicen-
ters overlapped in areas of the angular, posterior cingulate, mid-
dle temporal, and middle and superior orbitofrontal cortices
(Fig. 4). These regions form part of the default mode network,
which is metabolically active and highly connected with the rest
of the brain. Considering that such network hubs are more vul-
nerable to high basal metabolism and oxidative stress (Melov
et al. 2007; Vlassenko et al. 2010), they could be sites of tau and
Aβ deposition from which the protein spreading is initiated.

Interestingly, while the transneuronal spread model outper-
formed the local spread model in predicting the distribution of
pathogenic proteins, the local spread model also predicted a
comparable portion of Aβ deposition. Considering that tau
forms neurofibrillary tangles intracellularly, while Aβ forms
amyloid plaques extracellularly (Braak and Braak 1991a, 1991b),
it can be speculated that, compared with tau, a larger propor-
tion of Aβ could diffuse through the extracellular space, in addi-
tion to spreading transneuronally. Thus, our findings might
reflect the different contribution of spreading model for tau
and Aβ in AD.

Figure 2. t-Statistical maps of tau and Aβ calculated from PET data. R values and statistics were calculated using Pearson’s correlation test. t Values were rescaled

using min–max normalization. Aβ, amyloid β; AD, Alzheimer’s disease; PET, positron emission tomography.
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In this study, we used a t-statistical map of PET data
between cognitively healthy subjects and AD spectrum
patients, to focus on AD-related tau and Aβ distribution, as well
as their spreading mechanism. The tau t-statistical map
showed high levels of tau in the angular gyrus, inferior

temporal, and posterior cingulate cortices but relatively low
levels in the medial temporal cortex. This result is consistent
with the results of previous studies showing that aggregated
tau in the medial temporal lobe (area of Braak stages I and II) is
prevalent in cognitively healthy elderly subjects, whereas

Figure 3. Comparison between the predicted and actually measured tau map. (A) Spatial correlation between the model-predicted and actually measured tau map

across the different epicenter thresholds. Normalized t values were used in epicenter thresholds. The dotted line (black) indicates the highest 5% of R values obtained

from the permutation test. The highest correlation was found for the transneuronal spread model at a threshold of 0.6 (box). (B) The predicted tau maps at an epicen-

ter threshold of 0.6 and the actually measured tau map are shown by scatter plots; each dot represents a brain region. The dotted line represents the best-fitted line.

R values and statistics were calculated using Pearson’s correlation. Significant differences between 2 R values were calculated using Fisher’s R to z transformation.

*P < 0.05; **P < 0.01; ***P < 0.001 (2-tailed). AD, Alzheimer’s disease; LSM, local spread model; TSM, transneuronal spread model.
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isocortical accumulation of tau is associated with AD progres-
sion (Markesbery 1997; Braak et al. 2011; Schöll et al. 2016). This
condition, termed primary age-related tauopathy (Crary et al.
2014; Jellinger et al. 2015), has been repeatedly demonstrated in
both neuropathological (Davis et al. 1999; Bennett et al. 2006;
Braak et al. 2011) and PET studies (Schöll et al. 2016; Sone et al.
2017).

Interestingly, when we used smaller brain parcellation, the
performance of the local spread model improved for both tau
and Aβ. We attributed this finding to the fact that local spread-
ing occurs at a smaller scale in the brain than the transneuro-
nal spreading. Therefore, the local spread model could perform
better when using small brain parcellation (Supplementary
Fig. S4).

Figure 4. Map of Aß and tau epicenters (best-fit epicenters of the transneuronal spread model). (A) Tau epicenters at a threshold of 0.6 (blue dots), (B) Aß epicenters at

a threshold of 0.5 (red dots), and epicenters overlapping in both tau and Aß (yellow dots) are depicted in the map. Aβ, amyloid β.

Table 2 Linear regression analysis of tau and Aß distribution for the transneuronal spread model and local spread model

Tau distribution

At threshold 0.6 Coefficient SE t value P value

Transneuronal spread model
Intercept (ɑ) −0.60 0.14 −4.17 <0.001
Spread variable (ß) 5.44 0.77 7.03 <0.001
R2/R 0.38/0.62
P value <0.001

Local spread model
Intercept (ɑ) 0.59 0.19 2.97 0.004
Spread variable (ß) 16.926 17.62 0.96 0.33
R2/R 0.01/0.10
P value 0.34

Aß distribution

At threshold 0.5 Coefficient SE t value P value

Transneuronal spread model
Intercept (ɑ) −0.21 0.09 −2.18 0.03
Spread variable (ß) 3.64 0.54 6.71 <0.001
R2/R 0.34/0.58
P value <0.001

Local spread model
Intercept (ɑ) 0.12 0.11 1.13 0.25
Spread variable (ß) 29.01 9.82 2.95 0.004
R2/R 0.09/0.30
P value <0.004

Coefficients and statistical values were calculated using linear regression analysis.

Aß, amyloid ß; SE, standard error.
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To demonstrate the statistical significance and robustness
of our results, we performed a permutation test using random
map and bootstrap analysis by resampling from the data. The
results obtained from random maps demonstrated that our pri-
mary results are less likely to be false positive. Moreover,

bootstrap analysis showed that the data used in this study pro-
vided self-consistent results, robust to intersubject variability
in terms of diagnosis (cognitively healthy and AD spectrum)
and image modality (PET and rs-fMRI). Furthermore, we dem-
onstrated that our findings are also valid when using different

Figure 5. Comparison between the predicted and the actually measured Aβ map. (A) Spatial correlation between the model-predicted and the actually measured Aβ
map across the different epicenter thresholds. Normalized t values were used in epicenter thresholds. The dotted line (black) indicates the highest 5% of R values

obtained from the permutation test. The highest correlation was found for the transneuronal spread model at a threshold of 0.5 (box). (B) The predicted Aβ maps at

an epicenter threshold of 0.5 and the actually measured Aβ map are shown in scatter plots, in which, each dot represents a brain region. The dotted line represents

the best-fitted line. R values and statistics were calculated using Pearson’s correlation test. Significant differences between 2 R values were calculated using Fisher’s R

to z transformation. *P < 0.05 (2-tailed). Aβ, amyloid β; AD, Alzheimer’s disease; LSM, local spread model; TSM, transneuronal spread model.
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PET tracers (18F-AV1451 and 18F-florbetapir), as well as brain
parcellation schemes.

This study had some limitations. First, while 18F-THK5351
has a high affinity to tau neurofibrillary tangles (Harada et al.
2016), a substantial reduction in its uptake was reported after

administration of the monoamine oxidase B (MAO-B) inhibitor,
selegiline (Ng et al. 2017). It was found that 18F-THK5351 uptake
reflects both tau pathology and increased adjacent MAO activ-
ity due to astrogliosis, known as tau-associated neuroinflam-
mation (Harada et al. 2018). In this study, we excluded

Figure 6. Bootstrap histogram of R values. We used 1000 bootstrap samples to calculate R values from the 2 models (transneuronal spread model and local spread

model) at an epicenter threshold of 0.6 and 0.5 for tau and Aβ, respectively. (A) Distribution of R values from bootstrap samples, after replacing the PET images (tau

and amyloid PET) of 23 healthy subjects. (B) Distribution of R values from bootstrap samples, after replacing PET images of 35 AD spectrum patients. (C) Distribution

of R values from bootstrap samples, after replacing rs-fMRI data (connectivity map) of 23 healthy subjects. The solid line represents the median, and the dotted line

represents the 95% confidence interval for each histogram. Aβ, amyloid β; AD, Alzheimer’s disease; LSM, local spread model; PET, positron emission tomography;

rs-fMRI, resting-state functional magnetic resonance imaging; TSM, transneuronal spread model.
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subcortical structures which express high concentrations of
MAO from the analysis, to minimize the effects of off-target
binding. In addition, we expected that using t-statistical maps
would minimize the confounding effect of the physiological
binding of 18F-THK5351 to MAO. Furthermore, we replicated the
primary findings in the data using different tau tracer (18F-
AV1451), which showed low off-target binding to MAO (Hansen
et al. 2018). Nevertheless, our findings should be interpreted
with some caution, as they might reflect the tau-associated
neuroinflammation. Second, in this cross-sectional study, we
could not confirm whether the pathogenic proteins had spread
from the affected to the unaffected regions but could only infer
their spreading based on their relative level in one region com-
pared with that in other regions (spatial information). Opposite
to our results, a recent study by Whittington et al. reported that
Aβ accumulates by regional carrying capacities rather than by
spreading from a small number of regions (Whittington et al.
2018). Nevertheless, several previous animal and cell studies
support our findings, indicating a cell-to-cell transmission of
pathogenic proteins (Brettschneider et al. 2015). Therefore, fur-
ther research, such as a longitudinal study, is needed to solve
this issue. Third, as the model was based on the brain network
(self-connection was set to zero), local processes that are inde-
pendent of other brain regions, were not reflected by the model.
Lastly, the sample size was too small. Although we have valid-
ated our findings in 2 different data sets, they should be inter-
preted with caution and replicated using a larger data sample.
Moreover, a complementary approach to assess connectivity
(e.g., structural connectivity), as well as an individual approach,
could be tested in future studies.

In conclusion, we compared 2 models to describe the
spreading of pathogenic proteins in the brains of AD spectrum
patients. Our findings provide evidence for a network-based
spreading of both tau and Aβ in large-scale brain networks and
further suggest the different contributions of the spread models
for tau and Aβ. Lastly, as transneuronal spreading of patho-
genic proteins is considered a general process of neurodegener-
ative disease progression, the present approach can be applied
to other neurodegenerative diseases.
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Supplementary material is available at Cerebral Cortex online.
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